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LINEAR EQUATIONS OF MOTION OF A
CONCENTRATED DEFECT
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Abstract—The motion of a concentrated (point) defect in an elastic medium is investigated on the basis of a vari-
ational principle. The equations of motion and the principles of conservation of energy are derived and examined
in some detail. The localization of the Lagrangian makes it possible to regularize its singular part and deduce
explicit differential equations of motion. The radiation damping force is introduced by means of the Wheeler—
Feynman procedure. In the paper we confine ourselves to the quadratic Lagrangian and hence linear equations of
moton.

1. INTRODUCTION

IT is now a recognized fact that the motion of dislocations and other defects in a solid,
significantly influences its properties and constitutes the basis for an explanation of various
physical phenomena occurring in crystal structures. Consequently, it is necessary to
formulate a general theory of motion of discrete defects ; the motion of a discrete defect in
a continuum is not only an interesting and important phenomenon in itself but should
constitute the foundation for constructing a statistical theory of continuous distributions
of defects; the latter should justify (or introduce corrections to) the existing theory of
continuous dislocations based on a number of postulates. The analogy can be drawn here
with the classical hydrodynamics where the equations of motion can be derived either by
means of purely phenomenological considerations (Cauchy laws) or by statistical methods
on the basis of the (Newtonian or relativistic) particle mechanics ; here, the phenomeno-
logical equations essentially depend on the equations of motion of a single particle and
cannot be derived (and in fact were not derived) without a thorough knowledge of the
properties of motion of the latter.

There have been very few attempts to derive the equations of motion of a defect; we
mention here some papers having certain points in common with our treatment. J. D.
Eshelby [1] was the first to derive in a rational way the equation of motion of a single
dislocation. The problem was later investigated by A. M. Kosevitch [2]. The latter author
used a variational principle ; since, however, his general approach to the model of a defect
in an elastic continuum and hence the Lagrangian, are essentially different from ours, the
results are also significantly different. In [4] we made an attempt to construct the dynamics
of defects in a linear isotropic elastic continuum on the basis of a variational principle,
in the spirit of the general classical field theory, just as the classical electrodynamics or
mesodynamics.

t Visiting Professor, Department of Mechanics and Aerospace Engineering, Kansas University, Lawrence,
Kansas, US.A.
1 See [11] and [12].
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In this paper we propose to investigate the self-force of a concentrated defect, defined
in terms of the quantities characterizing the elastic field, in Section 2. It represents an
idealized model of motion of a group of interstitial atoms or vacancies having the shape
of a very small disc, or of a simplified very small Somigliana dislocation. The smallness of
the surface of the defect makes it possible to derive exactly the equations of motion consti-
tuting a set of ordinary differential equations with constant coefficients, and the conserva-
tion principles. Thus, the motion can easily be investigated in all details by very simple
mathematical methods.

We confine ourselves to linear expressions in velocities, i.e. to a quadratic Lagrangian.
A localization (renormalization) of the latter leads to a definite explicit expression for the
linear momentum of the dislocation, containing two (infinite) terms of the orders ¢, ! and
tg 3, respectively, where ¢ is the time required for a sound signal to travel the distance equal
to the diameter of the dislocation ; the ““mass’’ of the dislocation turns out to be a tensor of
second order, the components of which in some cases may be negative. One of the above
terms is proportional to the first and the second to the third derivative of the velocity of t*
dislocation, the equations of motion therefore are of the fourth order. Further, by means of
the Wheeler-Feynman procedure we derive an expression for the force due to the radiation
damping; it is proportional to the fourth derivative of the velocity. The higher order of the
derivatives as compared with, say, an electron in a Maxwell field, is due to the fact that we
are dealing with double layer surface distributions [4]. Finally we write down the equations
of motion and investigate their properties.

2. ACTION FUNCTIONAL AND ITS LOCALIZATION

Following the general idea of our earlier paper [4] we shall derive here the expression
for the self-Lagrangian of a concentrated dislocation in a linear isotropic elastic continuum.
The Lagrangian density constitutes a time integral and therefore the whole theory is non-
local in time [cf. 9]; moreover, since the defect is concentrated, the above time integral in
general does not exist. In order to obtain an explicit expression in terms of quantities at the
instant ¢t only, we shall employ a procedure which we call the localization of the Lagrangian
density ; here we follow the general method developed by P. G. Bergmann [3] for classical
electrodynamics.

Consider therefore a very small moving surface s(t) (Fig. 1) in an infinite classical
elastic medium ; the normal to the surface is denoted by n(t) and called the director of the

n(t)

FiG. 1



Linear equations of motion of a concentrated defect 883

defect; §(t) is its position vector. We assume that the displacement vector of the medium
u(x, ¢) suffers a discontinuity on s(z), which is independent of time, ie.

[, ] = uC, )—u, ) = —U. 2.1)

We assume in this paper that the director is also constant in time, i.e. i = 0. Since the
surface s(t) is very small, wherever convenient the integration over this surface can be
replaced by a multiplication by the appropriate area, which in turn can be included into the
definition of the discontinuity.

We are here interested in the self-Lagrangian only and therefore we omit the body forces
or other external fields; thus, the total displacement u(x, t) is due only to the defect. The
action integral is taken in the form (see [4)).

12 12
Wy =W— j dtJ da t (g, 1) [u(, t)]-i—% J dt f da mg? (2.2)
t s(1) f s(t)
where

W = W(u,u) =Jr2dtj dvL{u,u}
o 2.3)
L{u,u} = T{u,u} —II{u, u}.
Here, m is the mass of the defect (if any) carried by its motion through the medium,
T{u,u} = 3pi®
is the kinetic energy density and

IT{u,u} = HAV.u)?+3u(Va+uVv)?]

is the potential energy density of the medium.
The first term in (2.2) is the ordinary action integral of classical elastic field, while the
second represents the work done by the dynamic stress vector

t(,,)ll = 0'(")“ + pv(,,)l'l

(cmu = n. o is the ordinary stress vector on s and v, = n. ¢ = n.vis the normal velocity
of the dislocation) on the difference of the displacements of the two sides of the cut s(¢).
Finally, the last integral in (2.2) is the ordinary kinetic energy of a moving mass ; whether
m = 0orm # Ois in a way immaterial, since this mass constitutes only a part of the total
mass of the defect, the other part being the field mass ; it is however convenient to keep this
term in the calculations.

Integrating by parts we have

[ (e
W{u,u} = —EJ‘ dtJ~ duPu.u+§J dtj datg,u. [u]
ty v ! 1y s(1)

tz

+%pj dvia.u (2.4)

H
where P is the Lamé operator. Taking into account that outside the singular surface

Pu=20
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and using (2.1) we obtain dropping integration over s(t)

1 2 . tz2
Wy = 7f de(m* +tu. U)+%pj dvi.u (2.5)
t v

~ 1

ty

The last term is i;relevant, for in the variation we shall assume that 3L(¢,) = 8(¢,) = 0;
thus, setting v = § we finally have the following formula for the action integral of a defect
in an elastic field :

1 t2 1 12
Wr=-| dimv’+_| diU.t,u. (2.6)
2 t 2 1

Obviously, the second term represents the field contribution to the action of the defect;
here, t,u(C,, t) is the dynamic stress vector due to the defect taken at the point of the defect
at the instant ¢t. Since the defect is concentrated, this expression is infinite. The localization
procedure we now employ eliminates the time integral in t,,u and reduces the infinity of
the whole expression to just infinite constants.

First, observe that the displacement w(&,, t) can be represented in the form [cf. 4, Section
2]

ul, 1) = ——J‘ ’ d-U. t(,,)é(C,—C,, t—1) 2.7)

151

N
where G is the Green tensor symmetric in time, equal to half the sum of the retarded and
advanced Green tensors, i.c.

1 ret  adv

(+}=§G+G (2.8)

The displacement in (2.7) depends on both the past and future history of the defect, the final
results however, after the localization, contain quantities at the instant ¢t only. We shall
return later to the problem of choosing the Green tensor in the expression (2.7) for the
displacement.

Expanding the operator t, in (2.7), after simple transformations we obtain

) t2 . . 0 +.
ui(G, 1) = —j de(uU jnma’m"qvl,é;-i-pu(,,) Uy G%) (2.9)
1

where

oimre — iéjmépq_{_ 5jpo‘mq_+_ glagme (210)
u
Now, since

2 ¢ Fa D[ .
droyU;—G”" = —— dw,U,;G"
’t Dr),,

(2.11)
2 +
- v"J dtv, U;V,G"

ty
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we obtain

. . 2 + 2 4+
u'= —un,U;e™™P? | diV,G +pn, UpP | duo™V,G"
ty 51

(2.12)

D (" +
+pn, U Iy dt™G”.
i

Let us now find the dynamic stress vector appearing in the action functional (2.6}:

~
3

N ; ¢ .
z(n)u! = “nnotmsvrus“}'pu(n)‘é;ul
(2.13)

. D .
= Un,e'""V U+ Pty (—-m u'— v’V,u‘).
Dt
Bearing in mind that U = 0 we can add to the above expression an arbitrary derivative with
respect to time, without affecting the variation of the functional and therefore the equations
of motion ; thus, we may consider instead of (2.13) the expression

ti = pn,e™V u,— pv'V,u — pn, ", (2.14)

Now, we substitute into the above formula the expression for u'({,, t) and again neglect a
derivative with respect to t; moreover, being interested only in the equations of motion
linear with respect to the velocity of the defect orits derivatives, we neglectin the Lagrangian
terms of an order higher than vv. Thus, after some transformations we have

2 2 +
i

+ . .
dee"GF + 5gImPs j dzv,G}

iy

Uittt = ppnn,UU j[cg zﬁmj

L5
12

dtv,v,Gi (2.15)

— (Unvro.jmpqéis _ Céo.jmpqaim's‘)Jv
1y

A +
- v”a‘”’sj dw"‘VpV,G”} .
1

» . . + - - .
To calculate the (singular) integrals we first derive formulae for G and its derivatives.

We have
ret. . 1 ¥ r 1
G, t—1) = —{{t— t—1——]=—nlt—17——] |~
e £=7) 47!.0{( T)}}?( : “1) f?( f Cz)]FCr
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{this formula can readily be derived expressing 5 as an integral of §) we obtain

ret, 1 i .
d"(r,l‘—r) = m{rzj‘ é(t—r—t)d—ga‘&’»
4mp & clc r (2.16)
r r r
| oft—t——] Olt—1—— L 8lt—1—
+’"l’d 5( j C1) ( j Cz) +5” 5(t j Cz)
Pl c? c2 c3 r ’

The physical sense of the first term is the following : it represents the signals collected from

R ady L.
the part of the world line between the cones ¢, and ¢,. For G we have a similar formula,

namely
af;v"f(r,r-r)zzl—{rzf 5(r—z+ ) aw
P o r (2.17)
r . r . r
o dolt—14+—] Ot—t+— L olt—T14—
+r'r’ SV Cy +O” C,
r3 c? c2 c3 r ’

Making use of the formula

1 r r?
5[5([—— +5<I+c) ( "5
we finally arrive at the required expression for G

G"(r t—1) = {38‘6’ J 5((#,:)2-;

o) _3@,)]
+rr_2{(¢>3 ) )} Mé(qbcz}

41 2

(2.18)

where (t—t = 0)
1
(»bc = ¢c(9) = 02-2’5"2(0)'

+ . .
The above form of G is however not entirely convenient, since in the derivatives of G there
appear denominators containing r in high powers; consequently we integrate by parts the
first term in {2.18) and we havet

Giitr, 0) aﬁ{g [ 56+ 2L r- é(@)] dcﬁ”é{«ﬁq)} (2.19)

<2

+
t Sometimes the following form of G is useful:
de oY
Glie, 0) = w-[ZV V’ n(¢ —5+-5 Mtbc,]
The retarded and advanced Green tensors can also be represented in a similar form, namely

) ) : “dc{ 515(1 d +rrl ¢ or T ]}fauo
l — At i 2 —_ el TN —— —
GHre—r dnpr i, ‘ r? ac

and similarly for adv |
Gir.t—1).

t— r——

g
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Differentiating the above expression we obtain
1 [[d y 2 ..
wi = L[ st ores e
2npl ], ¢ c

&4
——C~gr”5’(¢n)} (2.20)

vaqéij - 2_1;{‘8‘ dcl::;o(uép)q(s (¢ )_£5<n;rprq)51/(¢)
¥4

€2

4 i ipas . 2 g
+3r' i () | — —x | 6P (d.,) ——rPrid (o)) ¢ -
¢ (& 3

Observe that we are outside the scope of the ordinary theory of generalized functions,
for &(¢h,) and its derivatives are multiplied by functions which are not sufficiently regular.
Consequently, not all operations admissible in this theory are admissible in our case; for
instance integration by parts is not allowed.

Consider now the generalized functions &(¢,.), d'(¢.), etc., appearing in the above
formulae. We have ¢.0(¢p.) = 0; differentiating this relation with respect to ¢, we obtain

¢0(P)+0(¢) = 0, ie. PI(Pc) = — (@)
¢ (@) +20(0) = 0, ie. $25"(¢) = 28(¢.) (2.21)
@0 () +36"(@,) = 0, i.e.¢25"(Pc) = —65(.).

Multiplying now in (2.19) and (2.20) 6'(¢,) and its derivatives by suitable powers of ¢, and
applying the formulae (2.21) we obtain

Glir, 6) = 4—715 {—j tde [505 (D) + 2:—” ) ] +5u 5(6.) }

¢
+i' ___ 1 “ dC {ij )5(¢c i 5(¢ )
VPGH(r, 6) = an{ jcz (35 r? ¢c Frire py: )
& de) (2.22)
3", }
VeyaGi(r, 6) = - {— j e [35015?)«"(4’ o
an 2 C ¢L‘
2 ¥o.) 24 ¥o.)
6(” Ppd 4+ t ripppa ¢
e E |
0” . ) 4 0, )J}
6?0 2 _ prq 2
C2 [ (f)(‘z % ¢L‘2

Bearing in mind the expression (2.15) we observe that the underlined terms in (2.22) lead 1o
powers higher than the second in v; therefore, they can be omitted in calculating the
integrals.
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Consider now a typical integral appearing in (2.15). We replace integration over 7 by
integration over 8 thus, we shall examine the integral

¢y = Jd@‘l’( 0é(e,)
where W() is a function analytic in the vicinity of § = 0, i.e.
W) = P+ 0¥, +0°¥,+. ..

To calculate the integral we introduce a new variable
1
82"2"57’2(9) = ¢c = 32'

Now, on the world line of the defectt

ri(0) = 0 v‘+0“'+0:i5“+ 223
= 21) 5 (2.23)
hence
R . .z b
{0y = 8 [U +Bvi+6 (—4—+‘3—)+] (2.24)
consequently,
= zZlot.+ Bz + 722+, df = (e +2B.2+3y.22 +..)dz (2.25)
where
p?|~1 vi 2|2
aC: (1—_;5) i BC::P(l—EE) ’
B 5(1@)2( 02)-% 1 (z;«”’- vé) v )'%
=g e el tralatyllital

It can readily be verified that the terms omitted in the above expressions drop out, for
Mz dz =0 fornz>1
and, in view of the antisymmetry,
fﬁ(zz)zz”* 'dz=0 forn=0.

Introduce now the notations

§(2 (2
A= (5(22)dz, Al = j‘b(jz ) dz, A?= ga(; ) dz. (2.26)

In the sense of any existing theory of generalized functions’these integrals do not exist or,
which in our case is equivalent, remain undefined ; a change of the integration variable
leads to the formulae
1{d(z), ., ey, . Lfa=) ,
Azij\z"f dz, A =§ "‘:FdZ, A =3 ”;,;d-. (2.27)

+ Observe that we approach the singularity of the defect along the world-line. The final results do depend on
the manner of passing to the limit.
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The first of the above integrals was used by Bergmann [3]. All integrals are infinite owing
to the presence of a singularity in the Green tensor and the fact that the dislocation is
infinitesimal ; if it were finite the considered integrals would also be finite; on this basis we
can estimate their magnitude. In fact, observe that z has the dimension of time and if ¢,
is the time required for a sound signal to travel a distance equal to the diameter of the
dislocation, then we have

A=t3'A% A=t 3AY, AT =1 SA

where A* A'* AZ* are finite undetermined constants.
Making use of the formulae (2.23)+2.25) and omitting terms leading to powers higher
than v? it is easy to prove that

f dOW(0)5(.) = 2 WA

j dﬂ?(f)}%@ = aP A + (39, + 328, +F,)A

jd(N’(B 920 (Z’") 3P LA+ (59, + Saf¥, +a5 WAL

We are now in a position to compute the integrals in (2.15); thus, retaining only the terms
relevant in our quadratic Lagrangian we have

-.n+ 'i éij —_ - nn
jd@v G’ = “ié“&;(cl 3 +2C2 3)U A+0(UZ)
. 1 . .
jdev,,é‘" = oy e T U + 5% SA+ O

.f doV,V,G% = -2-:-{;[%(c; 5 — ¢ 3)5167 4 05 55957 AL + O(v)

deVVé"S !
P T 14

np

v olodS P AL + 54D BEPTAY + O(v?)

-+ terms independent of v + termslinearinv

where
azf!"‘ — qsﬂ’é +bqsl7" lISP’ = __(a'ISP"ék +§b‘131”'
and
a®™ = L[3(c; 7 —c; )BT + 5 T6%6P"]
bEPm = 4[6(cy 7 —c; )68 + T, 767088 ]
Now we can egsily calculate the Lagrangian density U. f,u; taking into account that
the expression v'i/ may be replaced by —'s/ by adding a time derivative, after simple

though cumbersome transformations we obtain

U. tyu = mPiv v, +nP%,0, (2.28)
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where
mP = pcy SA[8P(m, U +m, U(z,,))+m3U(,,)n(pUq,+m¢UpUq+ms U,n,n,] (229)
Nye = pey AL U +ny UL ) +nyUn, Uy +n,U, U +nsUngn ) '
the coefficients m,, ..., ns are dimensionless and depend only on the ratio of the sound

velocities s = ¢,/c, ; this.quantity varies from zero (forv = ) to 1/\/2 (forv = 0). We have

1 1
m; = —(2s7+5), m; = ;8—&{2848?—328554»9533—18+48$”2—183'4),

14x%
1 644 54 2
my = m(-16057+~§vss—14s3—~?), My = '7—7;(437-1-3),
! 28 18
YR
141 5075
' (2.30)
{170 . 204 . 125 . 5 8
2 T — — 3 2_ -4
ny = 56 — (25" +3), n, S6nl 3 s’ 3 §3 3 +3+3q S
1 {40 , 38 31 1
231 — = 45743
iy 2n<2ls 15 s’ +s +105) HOA 4? ——(4s7+3)
L LA 1 o3
STy 21 35 105)

Observe that the components of the tensors mP and n”% can be both positive and nega-
tive, depending on the type of the defect and the properties of the elastic medium—its
Poisson ratio v, i.e. the parameter s. In fact, in the case of a normal defect, i.e. one for which
U, = 0 for small s the dominant term (arising from m,) is —(9/14mjuc; *A'?UZ,s™* in
the first term of the Lagrangian; analogous result holds for the second term. However,
in the case of a tangential defect we always have

mPt >

nPt < O

(2.31)

It is of course important to establish the sign of the quadratic forms m™v v, and n? 0, .
Let us examine successively the normal and tangential defects.
In the case of a normal defect, without affecting the generality we may set

n = (1,0,0), u; = u(1,0,0).
Then
My, = my+my+ms+m,+mg

= pcy SA'ur ——(160s7 — 408s> + 3355 + 8+ 24052 —90s ™ %)

140n
1
Myy = M3y = My +M, = ucy 5A1u25§7~[(28857-—32855+9533+8+485"2—185'4}

My, = Myy = My = 0.
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The polynomial appearing in m,, changes its sign in the considered range of s(s = 0,5906
is its root) and hence the quadratic form m"v v, is indefinite and its sign depends on the
Poisson number v. The same concerns the form n”% g, .

The case is essentially different when the defect is tangential. Here we set

n; = (110’ 0)’ U,' = u(o, 1,0)

and then
1 28 43
my = m +ms= m(1857—?55+?) >0,
1 7
Mas = my+my = (1857 +17) > 0.
1 7
m33=m1:171;(23 +5)>0, My, =myy =ny; =0
1 11 2 1 5 13
P = MR = 5o [_4_837+§S5_853+ (_QE-FE :|< 0
1 1 4 5
Ny, = Ny+ngy = _m[ §+§)s7+(‘—1+1” <0,
1 7
nyy=n, = ——(2s"+5) <0, Ny =Ny =Ny =0.
56n

Thus, applying simple criteria of definiteness of quadratic forms we obtain the follow-
ing important result:

mPiyu, > 0, n 0, < 0. (2.32)
Let us now return to the representation (2.9), of the displacement produced by the
dislocation, in terms of the Green tensor. We have been using so far the symmetric tensor

+

G which yields the Lagrangian density invariant with respect to the change of the time
direction and makes it possible to formulate in the non-local theory the variational prin-
ciple; since, however, we localize the Lagrangian density, the last merit of the Green tensor

+ . - . . . « . - ret
G is irrelevant and there are no principal objections against using the retarded tensor G.

- ret . + . -
If we introduce G instead of G, however, it turns out that no new terms appear in the
Lagrangian. We shall prove this statement. It is convenient to write

ret

G =G+G (2.33)
where G = 1/2(rGet—2&v); hence (we use the notationu = ;).

ret + e

u=u+tu (2.34)

and

U .ty = U.t,u+U. 1. (2.35)

. « + « . .
Simple calculations carried out as for the tensor G or by expanding u into the series of
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instantaneous potentials, lead to the following result:

. ret
U.t i =0, e U.tyu =U.t,u (2.36)
it is therefore irrelevant whether, at least in the quadratic approximation of the Lagrangian,

+ ret . . - - . " . .
we use G or G in our localization. It is interesting to note that in the expression ¢.u =
O+ pret each of the two terms contributes to the expression for the Lagrangian
density, these contributions being the following :

P
60rc3

U B u° respectively ; thus, only their sum vanishes.
We are now in a position to write the action functional in the form

o

S -3 b
gomer! ~ 6553+ (237)

(—65°+55° + DU (i, and —

W :J " dtLwv.¥) (2.38)
where l
L{v,v) = 3{m*Pp 0 +nP%,0,) {2.39)

and m*?? = mdP% 4+ m™. On the basis of (2.39} we can of course construct the Hamiltonian
and the whole Hamilton formalism. We confine ourselves here to deriving the Hamiltonian
only. Thus, we have [see 10],

H = —L+vPp,+6°r, (2.40)
where the generalized momentum is given by the formula
eL d €L)
i = e 241
Pi= dt(ﬁﬁ‘ (241)
and
- éL
T
Making use of (2.39) we obtain the required expression
H = H{m*Py 0, + 0P 0 ) — P06, = L—nPp,i,. (2.42)

It is easy to guess that the above Hamiltonian is conserved during the motion of the disloca-
tion and will be identified with its energy (cf. Section 3).

3. EQUATIONS OF MOTION AND THEIR PROPERTIES —
CONSERVATION OF ENERGY

Now we can derive the equations of motion and the principle of conservation of energy.
We postulate the variational principle

W =0 {3.1)
where

Lot
to
A

i

WK ‘f deLign, G, Go). (
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The Lagrangian density L does not contain in our case (t), the notation (3.2), however, is
convenient in our further considerations. The variation 6 in the principle (3.1) is the total
variation of the functional, due to the variation of the form of the function {(t) and the
variation of the independent variable t; we denote

St=¢, O=¢e (3.3)

then the variation of {(t) produced by the change of the form of the function only, is given
by the formula

SC.' = (éi_Ci)s' (3.4)
The total variation (3.1) can be written in the form of the sum
193 iz
ow =j dt (5L+j o(dr)L. (3.5)
t 1
Taking into account that
d dL
8(dt) = dt—(d1), 8L = 6L+—6t (3.6)
dt dt
where
- cL oL d oL d?
oL ~ %, =00, + 5{ 3%+ 3 . 77 32 %%) (3.7)

(the variation & commutes with the differentiation with respect to time) and substituting
into (3.5) we obtain the total variation of the considesed functional

¢L @Ld oL d2 d
ow = |l [ st S S0+ S| + S

after simple transformations of the square brackets, making use of (3.4) and (3.3) we have
finally

2

W :j zdt[L]”SCp—J dt((ij-?s (3.8)

where [L]' is the Lagrangian derivative

(L) = ¢L_d L +d—2(‘1“ (39
e de\ed) T der\ég )

¢cL d ,
0 — o ¢
A& -allle-on

Thus, the variational principle (3.1) and the du Bois—Reymond lemma lead to the
following form of the Noether theorem [6]: in order that the functional W be invariant
with respect to the transformation (3.3) it is necessary and sufficient that for an arbitrary
t in the interval (t,,t,),

and
eL .,
f(g,,—cp)JrL}. (3.10)

sp

[L]78¢, —i?.s = 0. (3.11)
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If we, moreover, require that the Euler equations of the problem be satisfied,

[L] =0, Le. nPo, —m*P%, = 0 (3.12)

the relation (3.11) yields the principle of conservation of the quantity 6(t), namely
o _ 0 313
dr (3:13)

Equation (3.12) are the required equations of motion of a concentrated defect in an
elastic field, when no external forces are present.
Assume now that the transformation (3.3) is a shift of the time axis; then

;=0 ie. & =0 (3.14)
and for the quantity 6(t) we obtain the formula (cf. 2.42)
0 = Hm*Pv 0,41 ,5) — i, = H. (3.15)

This quantity will be called the energy of the defect and the law (3.13) the principle of
conservation of energy. In contrast to the kinetic energy ofa Newtonian particle, the energy
given by (3.15) is not positive definite. This energy is positive definite if and only if the
defect is tangential and the motion is uniform (cf. 2.31).

Evidently, the principle of conservation of energy can be derived directly from the
equations of motion. If there exists an external force acting on the defect, the equations of
motion take the form

nP, —m*Py, = —fP. (3.16)
Multiplying (3.16) by v?, after simple transformations we obtain
o
dt
which in the case f = 0 yields (3.13). The law (3.17) states simply that the change of energy
of the defect is equal to the work done by the external force.

We now proceed to investigate the properties of the equations of motion; the latter
can be written in the form

f.v (3.17)

P ¢, —m*ra, = 0, (3.18)

This is a system of three ordinary differential equations with the unknown function {(¢).
One of its important properties is the fact that in the general case the equations are coupled,
in view of the tensorial nature of the mass of the dislocation m*?? and the field mass of
second kind nP?. It follows from this property that in general there does not exist a motion in
an arbitrary constant direction, which we denote by v'. In fact, then we have

v = vy, V=0, i =1 (3.19)
and hence, the equations of motion take the form
nPly i —m*Py 5 = 0. (3.20)

This is a system of three equations with one unknown function v(t); assuming that ¥(t) # 0,
in order that the above equations be reduced to one, we must have

nPly, = cm*Fiy, (3.21)
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where c is an arbitrary constant; for an arbitrary v' this condition is satisfied if and only if
n?? = cm*P? which in accordance with (2.29) and (2.30) never takes place for U # 0. Thus,
a defect set in motion either moves uniformly along a straight line, or it moves along a
curved trajectory. By setting the defect into motion we understand prescribing for t = 0
the four quantities £(0), v(0), 50) and #0). The case is entirely different when the direction
of the initial motion is not arbitrary but connected with the structure of the defect. Set for
instance v' = n'; then, instead of the condition (3.21) we have

n?n, = cmPn, {3.22)
ie., according to (2.29)
nP{(ny +ns)U? +(ny + ) U1+ UP(Gns +n)Uy,

A T'me3 5 . 5
= CK n E+(m1+m5)U +(my+3m3)UG, (3.23)
+ UPGms+my)Uy, }
With an appropriate choice of ¢ this condition is satisfied in the following two cases:
@) Um=0  (Tangential defect),
-} (n; +n5)U? (3.24)
At (ng/ﬂAl)+(m1+m5)U2
(ii) - U'=uUr" (Normal defect),
A (ny+ny+n3+n,+ns)U?

c=—
A (me3/uAY) + (m 4+ my +my+my+mg)U?-

In these cases we are faced with non-uniform motion along the straight line defined by the
director n'. ‘
Suppose now that v' = ¢, t.n = 0; now we have

t"(nl UZ + n, U(zn)) +%n”n2 U(n)U(,) + U”n4U(,)

— Al P mc; z 2 1,p P
= C-A— t }E—‘_i_m‘U +m UGy +3nfma U /Uy +UPm, U, {3.25)
Now, too, the condition is satisfied for both normal and tangential defects. Thus, we have
(1) U(n) =0,
c= ﬁ (n1 +H4)U2
Al (mCS/#AI)‘me +m4)UZ
Ui = Unf
1) o A (ny+n,)U?
Al (mc3/uAt)+(my+my)U? (3.26)

and a non-uniform motion in the constant direction ¢’ is possible.
In all above cases the equation of motion has the form

cv—0=0 (3.27)
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where in accordance with (3.24) and (3.26) c is a small constant parameter of the order ¢3.
It is of course important to establish the sign of ¢. A simple calculation shows that in the
case of a tangential defect we always have ¢ < 0 while in the case of a normal defect, for
both kinds of velocities, in the considered range of s, the constant ¢ changes its sign at least
once. The case ¢ < 0 corresponds to the periodic solutions of equation (3.27), whereas in
the case ¢ > 0 the solution contains a term of the form e'v* which is divergent as t — co.
Thus, in the case and only in the case of normal defects there exist elastic media in which the
motion of the considered concentrated defect is divergent.

For ¢ < 0 the general solution of equation (3.27) can be written in the form (we prefer
to put down the corresponding position vector)

L(t) = (Lo — o)+ (vo —clig)t + () —€)ig sin t\/ — ¢+ ¢ty cos t,/ —¢ (3.28)

where (., vy, i, U, are the initial values. Thus, the free motion of the considered defect is a
uniform motion with oscillations of a very small amplitude and a very large frequency
superposed on it; as ¢ — 0 we recover the Newton second law. The above phenomenon of
oscillations clearly resembles the well-known “Zitterbewegung™ of an electron.

We end this section with a remark concerning the order of the derived equations. It may
seem strange that the order of the derived equations of motion is four, while in electro-
dynamics the corresponding equations are of second degree (of the fifth and third degree,
respectively, if the radiation damping is taken into account ; see Section 4). The difference
is due to the different models of “*particles”; in fact, the electron constitutes a counterpart
of the simple layer surface potential, whereas the defect we consider is a double layer (see
equation 2.7), a discontinuity in displacement being equivalent to a distribution of a double
force. The equations of motion of a dipole electromagnetic charge can be shown to be of
fourth (fifth) degree and, conversely, the equations for a surface distribution of forces in
elasticity are of second (third) degree.

4. RADIATION DAMPING

It is evident that all processes described by the equation of motion (3.12) or (3.16)
derived from a variational principle (3.1) are of reversible character. It can easily be shown
that an irreversible term in the equations of motion of the form

stirl Cp (4.1)
can be deduced from the Lagrangian density
§P95,5,. (4.2)

The symmetric part of sP yields in (4.2) a time derivative, which leads to no term in the
equation of motion. It was noted before, however, (Section 2) that an introduction of the

tensor r(e}t instead of é which could perhaps in a natural way account for the irreversibility
of the process, leads to the result sP = 0. Of course we may always add formally to the
Lagrangian density a term of the form (4.2) with an indefinite tensor s, there seems how-
ever to exist no justification for this procedure.

On the other hand it is obvious that during its motion a defect in an elastic field radiates
elastic energy resulting in a damping which by analogy to electrodynamics will be called
the radiation damping. This phenomenon leads to a new term in the equation of motion
called the force due to the radiation damping.
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In non-relativistic electrodynamics this force has the value % (e2/c?)¢ [cf. e.g. 7], well
confirmed by experiment. This expression can be derived either by energy considerations
or by the Wheeler—Feynman method [8]; in the case of the elastic field, the first method,
mainly due to the presence of the term with the Heaviside function in the Green tensor,
leads to very complicated calculations, we shall therefore make an attempt to adapt the
Wheeler—Feynman procedure to defects in elastic field. It should be emphasized, however,
that it has been verified that the energy method leads to an expression of exactly the same
form, we may therefore hope that future calculations will prove that the coefficients (the
tensor sP%, see below) are also the same, as is the case in electrodynamics.

Consider therefore a system of interacting defects; the action of a defect § on defect
a(a, f = 1,2,...)is described by the force of § on «, given by the expression [see 4].

+ ¢ d ¢ +
f = "\ == . .
ot & dr (’K):(")}JI(S’ t) 9 4.3)
where
+ 1 ret adv
u=u+u). 4.49)
g 2\s 8

Assuming that there are no body forces, the total force on a defect «, including the self-force,
has the form

+
r=21 (4.5)
a B af
or, substituting from (4.3)
¢ d2é +
= —l=——=|U.t . .
)7 (ac a3V w2 (6

The sum appearing in this formula can be transformed as follows :

Z; _ z rﬁ!_l Z (rlit_a;dlv)+l;
[ f#a

a B B B a
pe e , ] @.7)
ret + ret  adv ret adv
= st+ut+_ju—u}—- u—u
,,;, g a 2\a o« ) 2%‘ 88 )
and, similarly, with obvious notations,
ret + 1 ret adv 1 ret adv
f; = f+f+-(f—f |—= f—1). 4.8
aT B;, af o 2( aa ax ) % ( af aﬂ) ( )

The last term in (4.7) or (4.8) is a characteristic of the whole system of defects moving in
. . . .. r dv
elastic field. Observe now, that since the singularities of u and ‘'’ are the same, we have at all

. . . . ﬂ B
points of the medium, including the surfaces of the defects, the homogeneous Lamé equa-
tions

1

Py [e-u)|=o0 4.9)
B B

N

2
B
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We now make the following assumption constituting the essence of the Wheeler-Feynman
method : both in the infinite past and the infinite future the total displacement field, ie.
the displacement field due to all defects, vanishes identically. Taking into account that

t
W=0 fort= —
i
adv
u=0 fort=+w
B

the above stated condition can be written in the form

T-0]=0 fort= —oo
g\ 8 B
ret  ady (4]0}
Z(n«—u =0 fort= +x.
g \# B
Thus, denoting
1 ret adv
ux,t) = — u(x,t)— u(x,t)
BN (]
we have the following initial-final problem for this function:
Pi=0 foranyt
4.1

mx, — ) = ix, +o0) =0

Under certain regularity assumptions, just as in the case of the Cauchy problem, it can be
proved that the above problem has only the trivial solution, i.e.

fi(x,t} = 0 for any t and x. (4.12)
Then, formulae (4.7) and (4.8) take the form

+ ret + lret adv
Yu= > utu+-{u—u
pﬂ [];*aﬂ a 2 a a

4.13)

fT Z r§(+}+1(rte_t_agv)'
x B*a af  ax 2l ax

In the last formula the first term in the right-hand side describes the action of other defects
on the defect o, the second term constitutes the infinite self-force examined in Section 2
and finally the last term describes a (finite) additional contribution to the equations of
motion; this is the required force due to the radiation damping, i.e.

rad 1{ret adv
f = —(f ~f ) (4.14)

2 aa e

It arose as a result of the assumption that due to the exchange of energy (interaction) between
all defects in the field, initially and finally, all energy in the field is entirely absorbed and a
complete rest occurs.

We now proceed to calculate this force in terms of the instantaneous characteristics
of the defect. This can be done either directly or by expanding the considered functions into



Linear equations of motion of a concentrated defect 899

instantaneous potentials; we use here the first method. First, introduce the notations

_ 1 ret  adv a 1 18 zEl;v (4 15)
] b — 27T '
and observe that
—_ +
G, —&,, t—1) = sgn(t — )G, — &, t — 7). (4.16)
According to (2.9) we have the expression for the displacement #'({, t):

ax a

(¢, t) = —uU jn, o™ deVprI(C, —{,,t—1)
a a a a a a (4‘17)

. . 0
Hence, making use of (4.14) and (4.3) and dropping the irrelevant index a we have for the

force to be calculated

rad

fi=u,U ,n,n,[yza’""“’a"fs JdtV‘VstGk i
+ upa™* Pt x jdtC'V'V ;Gk1+upa””5"”'c' fd‘L'V Vsa G,;

2

3
+ pzé"’"é”C‘JdtC'V‘ 5Gyj (4.18)

‘ot
As in the whole paper we confine ourselves to expressions linear in the velocity of the defect
or its derivatives. Thus, the fourth and the third terms in the right-hand side of (4.16) may

be omitted, as easily verified by integration by parts. Integrating by parts in some of the
remaining terms as well, we obtain

fi=U,Unnp [ omkpglris jdrV V, V.G, c3a™*" JdrC’V V,Gi

'\2
+,up0'lrj55km5it JdTV g Gk1+p25km5115n d fdtcr G :I

4.19)
— c2gmikpgri Jdrffv,.v,,é; o Jdrt"ém'} .

The Green tensor entering the above formula has the form (cf. 2.19)

ij = Gk}c _Cnt‘t) = ij(rt’g)

= —sgné. —g I: rié' (P ——5 5(¢c:| (4.20)
+ ¢c,}

r? 1 . 2 v
¢c=02—?=92[1—?(vz+0w+02(?+? +...].

where
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In our linear approximation we have the relations

(n);

i, (m) 1
= {, lim sgn()é{@z—?[rz(t)+0202+...]}

(n); (m) r:
{(0)sgn 06 (92 —C—f)

!

f=a r(t)—0

() m 2
= & lim sgn 9‘5’(02—rc(2t) ) (421)

r(t)— 0
). ()
= (. sgnB3(6?)
and the integrands of the integrals in (4.19) have the form

Ct mi “—(Cl +2(2 )mlS;Sgn 65(6%),

1 o , ,
= 5;T;{%(c( =3 %0y Oyt €2 20440, 1, sgn 05'(6%), (4.22)

~ 1 - - - ”
VinVstk = —n—p{%(cl 7_C2 7)Akjspiu+c2 7Bkjspiu}r“ sgn 06 (02),

where
Akm, = 126(,(15“5 + 384 105)p01u s
B, jspiv = 3010(s,0;

(sp“i)u*
In the above integrals we replace integration with respect to T by integration with respect to

N . .
6 and we expand the quantities { ,, into the Taylor series around the point 7 = ¢:

), (m, n, m+1)  (n+2)0? n+3 03
(= 00+0)=<¢+ 0+ ¢ >+ § —
2 6
nt4),0° (+s), 95
@ ot
Further, making use of the identity
sgn 08(0%) = —3'(0)} (4.23)
we obtain
otm
sgn 95(62) = lim sgn 05(92 —&?) = llm sgn 96(02)"6«)2 —&2)
=0
(‘W(n) 6(")
11m sgn 05(0% —¢?) = 5'(0). 4.24)

(,(92)11 (';(92)71

+ It can be proved as follows:

50—a) o0
56 = lim 5(0% —a?) = lim [‘ “+‘ﬁf9]
a—0 a0

2a 2a

Hence

SO—a) 56+
gn%wﬂ=um[( @ O+ _ s
a0 2a 2a
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. . ()
In view of the above relations, bearing in mind the symmetry of the function ¢ (0*)we finally
obtain the expressions for the required integrals

f d6%(r + 0) sgn 05(6%) = d9('¢"€+f" 6) sgn 65(6%)

2 3
jdf}f"(t+9) sgn 05'(6%) = d9(§‘+{ 0 +0= 9 +&" 0 )sgn 65'(9%)

2 3 4 5

j.dB[C"(t+0)-”‘(t)} sgn 05"(6%) = d0(5i6+f"%'+f‘€ St U

)sgn p5"(0%)

5

= jde("‘fe#iwf‘f +u ) 05"(62
= e 120/ 8" )

H

iy l. o 05 62 5
d()( 0+C +¢ ) GG 3'(0)

120
( Y Y

After simple though cumbersome calculations, substituting into (4.17) we obtain the
required force due to the radiation damping, namely we have

rad ...

fa=5", (4.26)
where
Sip = 840 {5,,,(s1 U2+ 5,UL )+ 53U U,y +s,U U, +5sUnn,} (4.27)
The coeflicients of s; are constants given by the simple formulae
s; = 4s"+10
s3 = 9257 — 11255+ 355+ 6
53 = —80s” +140s° — 705> — 18 (4.28)
S, = 85" +6

55 = 85" —285%+3553+34.

Thus, the force due to the radiation damping is proportional to the fourth derivative of
the velocity and hence it increases the order of the equation of motion by one, similarly to
the equation of motion of an electron in Maxwell field.
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Consider now some particular cases of this force, as in Section 3. Assume first that the
defect moves in the direction of its normal, ie. o' = vv, v = n'. We then have

(i) Up=0

rad P,
fo= _‘84071(:3 Uvni(s, +ss) (4.29)
(i1) Ui = Un
rad P 2
fi= ‘840nc3U T(s; +5;+ 53+ 84+85). (4.30)
2
Set now ¢’ = ¢, n.t = 0; here we obtain
(1) U(n) =0
rad I P
fi= gz Ut +5) (@31
2
(i) Ui = Un'
rad P 2
fa': ‘—WU Ul‘(St-\LSZ}; (432)
2

in all cases it is readily verified that since
{S;+534+53+5,+55) >0

(8, +s4) >0 (433)
(s,+5;) >0 '

(s;+s5)>0

i

for a positive i we always have in the case v = vn

rad

f.n<0 (4.34)

whereas in the case v = off

T t<o (4.35)
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Résumé—Le mouvement d’un défaut concentré (point) dans un milieu élastique est examiné en se basant sur un
principe de variations. Les équations de mouvement et le principe de la conservation de I’énergie sont déduites
et examinées d’une fagon assez détaillée. La localisation de I’expression de Lagrange permet de régulariser sa
partie singuliére et de déduire des équations différentielles de mouvement formelles. La force d’amortissement de
radiation est introduite au moyen du processus Wheeler—Feynman. Dans I’exposé nous nous bornons a ’équation
du second degré de Lagrange et par suite & des équations de mouvement du premier degré.

Zusammenfassung—Die Bewegung eines konzentrierten (Punkt-) Defektes in einem elastischen Medium wird auf
Grund des Variationsprinzips untersucht. Die Bewegungsgleichung und das Energieprinzip werden abgeleitet
und genau untersucht. Lokalisierung der Lagrange’schen Funktion ermdglicht es deren singuliren Teil zu
regeln und explizite Differentialgleichungen der Bewegung abzuleiten. Die Strahlungs-Dampfungskrafte werden
mittels des Wheeler—-Feynman Vorganges eingefiihrt. In der Arbeit beschrinken wir uns auf die quadratische
Form der Lagrangeschen Funktion und somit auf die linearen Bewgungsgleichungen.

AbcTpakT—Ha OCHOBE BapHALIMOHHOTO TPHHLIMIA MCCIENYETCS IBHXKEHHE COCPeNOTOYHOro nedpdexra B
ynpyroit cpene. JaH BbIBOJA ypaBHEHWI IBHXEHMS M 3aKOHA COXPAHEHHs 3HEPrMH, KOTODBIE Hajiee Wccie-
ayroTcs noapobuo. JIokanu3aums jJarpaHXuaHa JAaeT BO3MOXHOCTb PELY/SAUMHM MX CHHTYJIAPHYIO HacTbiO
M BBIBECTH TOYHbIE AupdepeHIHANBLHOE YPaBHEHUS aBwKeHusi. [IpuBoAUTCH CUITy 3aTyXaHus M3NIydYeHHS B
cmbiclie MeTona Yunepa-deiiumana. ABTOp OrpaHMuMBaeTC B 310 paboTe KBAIPATHBIM NATPAHXHAHOM,
U OTCIO[a JINHEHHBIM YPaBHEHHEM ABHXKEHHUSA.



