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LINEAR EQUATIONS OF MOTION OF A
CONCENTRATED DEFECT

ELZBIETA KOSSECKA and HENRYK ZORSKIt

Institute of Fundamental Engineering Research, Polish Academy of Sciences, Warsaw

Abstract-The motion ofa concentrated (point) defect in an elastic medium is investigated on the basis of a vari
ational principle. The equations of motion and the principles of conservation of energy are derived and examined
in some detail. The localization of the Lagrangian makes it possible to regularize its singular part and deduce
explicit differential equations of motion. The radiation damping force is introduced by means of the Wheeler
Feynman procedure. In the paper we confine ourselves to the quadratic Lagrangian and hence linear equations of
motion.

I. INTRODUCTION

IT is now a recognized fact that the motion of dislocations and other defects in a solid,
significantly influences its properties and constitutes the basis for an explanation of various
physical phenomena occurring in crystal structures. Consequently, it is necessary to
formulate a general theory of motion of discrete defects; the motion of a discrete defect in
a continuum is not only an interesting and important phenomenon in itself but should
constitute the foundation for constructing a statistical theory of continuous distributions
of defects;t the latter should justify (or introduce corrections to) the existing theory of
continuous dislocations based on a number of postulates. The analogy can be drawn here
with the classical hydrodynamics where the equations of motion can be derived either by
means of purely phenomenological considerations (Cauchy laws) or by statistical methods
on the basis of the (Newtonian or relativistic) particle mechanics; here, the phenomeno
logical equations essentially depend on the equations of motion of a single particle and
cannot be derived (and in fact were not derived) without a thorough knowledge of the
properties of motion of the latter.

There have been very few attempts to derive the equations of motion of a defect; we
mention here some papers having certain points in common with our treatment. J. D.
Eshelby [lJ was the first to derive in a rational way the equation of motion of a single
dislocation. The problem was later investigated by A. M. Kosevitch [2]. The latter author
used a variational principle; since, however, his general approach to the model of a defect
in an elastic continuum and hence the Lagrangian, are essentially different from ours, the
results are also significantly different. In [4J we made an attempt to construct the dynamics
of defects in a linear isotropic elastic continuum on the basis of a variational principle,
in the spirit of the general classical field theory, just as the classical electrodynamics or
mesodynamics.

t Visiting Professor, Department of Mechanics and Aerospace Engineering, Kansas University, Lawrence,
Kansas, U.S.A.

~ See [II] and [12].
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In this paper we propose to investigate the self-force of a concentrated defect, defined
in terms of the quantities characterizing the elastic field, in Section 2. It represents an
idealized model of motion of a group of interstitial atoms or vacancies having the shape
of a very small disc, or of a simplified very small Somigliana dislocation. The smallness of
the surface of the defect makes it possible to derive exactly the equations of motion consti
tuting a set of ordinary differential equations with constant coefficients, and the conserva
tion principles. Thus, the motion can easily be investigated in all details by very simple
mathematical methods.

We confine ourselves to linear expressions in velocities, i.e. to a quadratic Lagrangian.
A localization (renormalization) of the latter leads to a definite explicit expression for the
linear momentum of the dislocation, containing two (infinite) terms of the orders to I and
to 3, respectively, where to is the time required for a sound signal to travel the distance equal
to the diameter of the dislocation; the "mass" of the dislocation turns out to be a tensor of
second order, the components of which in some cases may be negative. One of the above
terms is proportional to the first and the second to the third derivative of the velocity of t'

dislocation, the equations of motion therefore are of the fourth order. Further, by means of
the Wheeler-Feynman procedure we derive an expression for the force due to the radiation
damping; it is proportional to the fourth derivative of the velocity. The higher order of the
derivatives as compared with, say, an electron in a Maxwell field, is due to the fact that we
are dealing with double layer surface distributions [4]. Finally we write down the equations
of motion and investigate their properties.

2. ACTION FUNCTIONAL AND ITS LOCALIZATION

Following the general idea of our earlier paper [4J we shall derive here the expression
for the self-Lagrangian ofa concentrated dislocation in a linear isotropic elastic continuum.
The Lagrangian density constitutes a time integral and therefore the whole theory is non
local in time [cf. 9J; moreover, since the defect is concentrated, the above time integral in
general does not exist. In order to obtain an explicit expression in terms of quantities at the
instant t only, we shall employ a procedure which we call the localization of the Lagrangian
density; here we follow the general method developed by P. G. Bergmann [3J for classical
electrodynamics.

Consider therefore a very small moving surface s(t) (Fig. 1) in an infinite classical
elastic medium; the normal to the surface is denoted by n(t) and called the director of the

n(tl

FIG. 1
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(2.2)

defect; ~(t) is its position vector. We assume that the displacement vector of the medium
u(x, t) suffers a discontinuity on s(t), which is independent of time, i.e.

+ -
[u(~, t)J = u(~, t) - u(~, t) = - U. (2.1)

We assume in this paper that the director is also constant in time, i.e. it = O. Since the
surface s(t) is very small, wherever convenient the integration over this surface can be
replaced by a multiplication by the appropriate area, which in turn can be included into the
definition of the discontinuity.

We are here interested in the self-Lagrangian only and therefore we omit the body forces
or other external fields; thus, the total displacement u(x, t) is due only to the defect. The
action integral is taken in the form (see [4]).

III I 1III IWT = W - dt da t(n)U(~' t)[u(~, t)J +2 dt da m~2
11 s(t) 11 S(I)

where

W = W(u, u) =Ill dt rdvL{u, u}
tl JL'

L{U, u} = T {u, u} - II{u, u} .

Here, m is the mass of the defect (if any) carried by its motion through the medium,

T{u, u} = tpiJ2

is the kinetic energy density and

II{u, u} = t[A(V . U)2 + tJ.l(Vu + UV)2J

(2.3)

is the potential energy density of the medium.
The first term in (2.2) is the ordinary action integral of classical elastic field, while the

second represents the work done by the dynamic stress vector

t(n)u = O"(n)u +PV(n)u

(O"(n)u = n . (J is the ordinary stress vector on sand v(n) = n . ~ = n. v is the normal velocity
of the dislocation) on the difference of the displacements of the two sides of the cut s(t).
Finally, the last integral in (2.2) is the ordinary kinetic energy of a moving mass; whether
m = 0 or m i= 0 is in a way immaterial, since this mass constitutes only a part of the total
mass ofthe defect, the other part being the field mass; it is however convenient to keep this
term in the calculations.

Integrating by parts we have

1Jtl f 1Jtl JW{u, u} = -2 dt dvP~. u+- dt da t(n)U' [uJ
t1 v 2 t[ S(I)

+tp rdv U. U It
l

(2.4)
Jv '1

where P is the Lame operator. Taking into account that outside the singular surface

Po = 0
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and using (2.1) we obtain dropping integration over s(t)

1[2. f It
2

WT = 1 dt(m~2 +t(n)u, U)+tp dvu. U .
... '1 t' tl

(2.5)

The last term is irrelevant, for in the variation we shall assume that b~(td = b~(t2) = 0;
thus, setting v = ~ we finally have the following formula for the action integral of a defect
in an elastic field:

(2.6)

Obviously, the second term represents the field contribution to the action of the defect;
here, t(n)u(~" t) is the dynamic stress vector due to the defect taken at the point of the defect
at the instant t. Since the defect is concentrated, this expression is infinite. The localization
procedure we now employ eliminates the time integral in t(n)u and reduces the infinity of
the whole expression to just infinite constants.

First, observe that the displacement u(~t, t) can be represented in the form [cf. 4, Section
2]

(2.7)

+
where G is the Green tensor symmetric in time, equal to half the sum of the retarded and
advanced Green tensors, i.e.

+ 1(re, adv)
G="2 G + G (2.8)

The displacement in (2.7) depends on both the past and future history ofthe defect, the final
results however, after the localization, contain quantities at the instant t only. We shall
return later to the problem of choosing the Green tensor in the expression (2.7) for the
displacement.

Expanding the operator t(n) in (2.7), after simple transformations we obtain

where

Now, since

a jmpq = ~ bjmbpq +bjpbmq + bjqbmp .
f1

(2.9)

(2.10)

(2.11 )
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(2.12)

Let us now find the dynamic stress vector appearing in the action functional (2.6):

(2.13)

Bearing in mind that iJ = 0 we can add to the above expression an arbitrary derivative with
respect to time, without affecting the variation ofthe functional and therefore the equations
of motion; thus, we may consider instead of(2.13) the expression

(2.14)

Now, we substitute into the above formula the expression for Ui(~t, t) and again neglect a
derivative with respect to t; moreover, being interested only in the equations of motion
linear with respect to the velocity ofthe defect or its derivatives, we neglect in the Lagrangian
terms ofan order higher than vv. Thus, after some transformations we have

(2.15)

+
To calculate the (singular) integrals we first derive formulae for G and its derivatives.

We have

ret.. 1 { [ ( r) ( r)J . .1Gll(r, (-1:) = - (t-1:) IJ t-1:-- IJ t-1:-- c'j)1-
4np ("I ("2 r

..[b(t-1:-!-) ~t-1:-r ~ .. b(t-1:-!-)}rlrl (" c b1l C+_ 1 2 +__ 2

r3 d d dr'

Taking into account that
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(this formula can readily be derived expressing 1] as an integral of0) we obtain

ret.. 1 f2 fC! ( r)dC . .1G'l(r,t-r) = - r 15 t-r-- -5J)'{}L
4np C2 C C r

..rt5(t-r-~) t5(t-r-~)] .. t5(t-r- r )}r'rl C C 0'1 C+_ I 2 +_ 2

r3 d d dr'

(2.16)

The physical sense of the first term is the following: it represents the signals collected from
adv

the part of the world line between the cones C 1 and C2' For G we have a similar formula,
namely

adv.. 1 {lfC' ( r)dC ..1G'l(r,t-r) - r J t-r+- 30'OL

.. [t5i~~r+ ;2) o{t-r:cr)J r... b(t-r+~)}r'rl \ C 1 C2 b'l C2

ci C~ r'

Making use of the formula

+
we finally arrive at the required expression for G

+ .. 1 f3 . .1 fC! dc
G!J(r, t-r) = - r 8'i)1- b(<Pc)4:

4np r C2 C

+ ri,J fb(<Pc.) _ b(<Pc,)l +t5ij t5(<p l}
r 2 Ld C~ J C~ C2

where (r- t = &)

(2.17)

(2.18)

+
The above form of G is however not entirely convenient, since in the derivatives of G there
appear denominators containing r in high powers; consequently we integrate by parts the
first term in (2.18) and we havet

Gii(r, e) -4
1 {rC! [-bijb(<Pc)+ 2r;jJ'(<P) d~+b~ t5(<Pc"l (2.19)
np JC2 C JC C2 f

+
t Somelimes the following form of G is useful:

GU(r.O) = _l_I~ViVjJ" I](¢,J
dc+~O(¢J

4rrp L2 " c
2 d ~

The retarded and advanced Green tensors can also be represented in a similar form. namely

G"j(r. t-r) I ~{(' dC{_{jU{j (t-r-~ )+ri,J ~r::O(t-T-~ )Jt ~O(t-T-!-l}
4rrp r J"c3 c r 2 (lcL c rr d C2

and similarly for ad.GU(r.t-T).
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Differentiating the above expression we obtain

887

(2.20)

VPGij = _1_{'JCl dc [3c5(ijrPlb'(</>c) -~ri,JrPc5"(</»
2np C2 C

6
C

2 J
bij }-srPc5'(</>c2)
C2

vpvqGij = _l_{rCI

dC[3(5(ij<5Plq<5'(</>c)_ 12 c5(ijrPrQ)<5"(</>c)
2np JC2 c6 c2

+ 44ri,JrprQ<5"'(</» - <5~ [<5 pQ<5'(</>C2) - 22 rprQ<5,,(</>J} .
e J Cz C2 J

Observe that we are outside the scope of the ordinary theory of generalized functions,
for (j(</>c) and its derivatives are multiplied by functions which are not sufficiently regular.
Consequently, not all operations admissible in this theory are admissible in our case; for
instance integration by parts is not allowed.

Consider now the generalized functions <5(</>c)' (5'(</>c), etc., appearing in the above
formulae. We have </>cb(</>c) = 0; differentiating this relation with respect to </>c we obtain

</>c<5'(4)c)+c5(</>c) = 0, i.e. 4>cb'(</>c) = -<5(</>c)

4>c8"(</>c)+ 2<5'(4)cl = 0, i.e. </>~8"(</>c) = 28(</>cl

</>cc5"'(</>c)+ 3c5"(</>c) = 0, i.e. </>l8"'(</>c) = -68(</>c)'

(2.21 )

Multiplying now in (2.19) and (2.20) c5'(4)J and its derivatives by suitable powers of 4>c and
applying the formulae (2.21) we obtain

+ ij __1 {_ JCI
de [ ij ri,J 8(</>c)J <5ij }

G (r,O) - 4 4 1> 1>(</>c)+2 ,2 '" + 3 8(</>C)2
np C2 e ( 'f'c e2

(2.22)

Bearing in mind the expression (2.15) we observe that the underlined terms in (2.22) lead to
powers higher than the second in v; therefore, they can be omitted in calculating the
integrals.
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A.. = .,.2\Pc .... +

Consider now a typical integral appearing in (2.15). We replace integration over r by
integration over 8; thus, we shall examine the integral

c1 = fd8':P(8)8(1>e)

where ':P(8) is a function analytic in the vicinity of8 = 0, i.e.

':P(8) = ':Po + 8':P1+ 82':P2+ ...

To calculate the integral we introduce a new variable

82_~r2(e)
c2

Now, on the world line of the defectt

. (. 8. 8
2

. )
r'(l}) = 0 V'+:2V'+6V'+ ...

hence

(2.23)

(2.24)

consequently,

e= z(c~e + Pez + }'eZ2 + ...),

where

(2.25)

~e = (l-~:ri, Pe ;:i2(1-~:r2,

5 (VV)2 ( V
2

) -j; 1 (I? Vii) ( V
2)-!

}'e = 8 1- c2 +2c2 4 +3 1- c2 .

It can readily be verified that the terms omitted in the above expressions drop out, forf8(z2)z2n dz = 0 for n :?': 1

and. in view of the antisymmetry,

f8(z2)z2n + 1 dz 0 for 11 :?': O.

Introduce now the notations

(2.26)

In the sense of any existing theory of generalized functions'these integrals do not exist or,
which in our case is equivalent, remain undefined; a change of the integration variable
leads to the formulae

~ = ~J8(z') dz', L\ 1 = ~f8(z') dz', (2.27)

t Observe that we approach the singularity of the defect along the world-line. The final results do depend on
the manner of passing to the limit.
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The first of the above integrals was used by Bergmann [3]. All integrals are infinite owing
to the presence of a singularity in the Green tensor and the fact that the dislocation is
infinitesimal; if it were finite the considered integrals would also be finite; on this basis we
can estimate their magnitude. In fact, observe that z has the dimension of time and if to
is the time required for a sound signal to travel a distance equal to the diameter of the
dislocation, then we have

where A*, A1*, A2 * are finite undetermined constants.
Making use of the formulae (2.23H2.2S) and omitting terms leading to powers higher

than v2 it is easy to prove that

Jd8'P(8)c5(<pc) = cx'PoA

Jd8'P(8)c5(<Pc) = cx'POA 1 + (3y'Po +3cx!J'P1 +CX3'P2)A
<Pc

Jd8'P(8)82c5~c2 = cx3'PoA2+(Sy'PO+SCX!J'Pl +CX 5 'P2)A 1
•

We are now in a position to compute the integrals in (2.1S); thus, retaining only the terms
relevant in our quadratic Lagrangian we have

Jd8iJnGii = __c52-~(C13+2C23)VnA+o(v2)
1 np

Jd8Vp Gqi = 4~pWc15-C25)c5(qiVP)+c5qiC25vPJA+O{v2)

Jd8V V Gqs = _1_ vkv1cx'lsprAl + vk(il RqsprA)+0(v3 )
p r 14np kl Pkl

+ terms independent ofv + terms linear in v

where

and

Now we can easily calculate the Lagrangian density U . t(n)u; taking into account that
the expression viiJi may be replaced by - ViVi by adding a time derivative, after simple
though cumbersome transformations we obtain

(2.28)
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(2.30)

2 -4)-s

m
pq

= pc]. Sil'[bpq(m) UZ+I11ZUfnt)+1113U(ntll(pUqt+m4U pUq+msUzllpnq]
(2.29)

npq = pc].sil[bpq(ll) UZ+llzUfnt)+1l3U(ntll(pUqj+1l4U pUq+nsUZnpllq]

the coefficients m), ... , lis are dimensionless and depend only on the ratio of the sound
velocities s = cz/c,; this.quantity varies from zero (for v = i) to 1/)2 (for v = 0). We have

m, = l~n(2S7+5), mz = 2~n(284S7-328sS+95s3-18+48s-2-18s-4),

m3 = l~n (-160S7+6~ss -14s3- 55
4

), 111 4 = 7~(4s7 +3),

I11s = ~_ (16s 7 28 +~)
14n 5 5.

Observe that the components of the tensors I11 pq and Ilpq can be both positive and nega
tive, depending on the type of the defect and the properties of the elastic medium-its
Poisson ratio v, i.e. the parameter s. In fact, in the case ofa normal defect, i.e. one for which
Ua = 0 for small s the dominant term (arising from mz) is -(9/14n)pczSil'vzUfnts-4 in
the first term of the Lagrangian; analogous result holds for the second term. However,
in the case of a tangential defect we always have

mpq > 0
(2.31 )

It is of course important to establish the sign of the quadratic forms mpqvpvqand IlPqvptiq.
Let us examine successively the normal and tangential defects.

In the case ofa normal defect, without affecting the generality we may set

Then

ni = 0,0,0), Ui = u(l, 0, 0).
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The polynomial appearing in mil changes its sign in the considered range of s(s = 0,5906
is its root) and hence the quadratic form mpqvpvq is indefinite and its sign depends on the
Poisson number v. The same concerns the form npqiJplJq.

The case is essentially different when the defect is tangential. Here we set

and then

ni = (1,0,0), Vi = u(O, 1,0)

1 7
m33 = m l = -(2s +5) > 0,

14n

1 7
n33 = n l = --(2s +5) < 0,

56n

Thus, applying simple criteria of definiteness of quadratic forms we obtain the follow
ing important result :

(2.32)

Let us now return to the representation (2.9), of the displacement produced by the
dislocation, in terms of the Green tensor. We have been using so far the symmetric tensor
+
G which yields the Lagrangian density invariant with respect to the change of the time
direction and makes it possible to formulate in the non-local theory the variational prin
ciple; since, however, we localize the Lagrangian density, the last merit of the Green tensor
+ rel

G is irrelevant and there are no principal objections against using the retarded tensor G.
ret +

If we introduce G instead of G, however, it turns out that no new terms appear in the
Lagrangian. We shall prove this statement. It is convenient to write

ret +

G =G+G

ret adv +
where G = 1/2(G- G); hence (we use the notation u = u).

ret +
U = U+U

and

ret -

U. tIn) U = U. t(n)U+ U . t(n)U,

(2.33)

(2.34)

(2.35)
+

Simple calculations carried out as for the tensor G or by expanding U into the series of
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instantaneous potentials, lead to the following result:

ret

U . t(n)ii = 0, i.e. U . tin) n = U . t(nlU (2.36)

it is therefore irrelevant whether, at least in the quadratic approximation of the Lagrangian,
+ ret

we use G or G in our localization. It is interesting to note that in the expression t(n)n
(l(n)n +PV(niJ each of the two terms contributes to the expression for the Lagrangian
density, these contributions being the following:

--p-( -6s5 + 5s3 + 1)
60nd

(2.37)

U(n)V(n)VpUP, respectively; thus, only their sum vanishes.
We are now in a position to write the action functional in the form

f
lo

W = dtL(v,v)
"where

(2.38)

L(v, v) (2.39)

and m*pq = mbPq + m
pq

. On the basis of (2.39) we can of course construct the Hamiltonian
and the whole Hamilton formalism. We confine ourselves here to deriving the Hamiltonian
only. Thus, we have (see 1OJ,

H (2.40)

where the generalized momentum is given by the formula

tL d (?L)
Pi = tvi -d~ (it;i

and
ilL

r i = NF

Making use of (2.39) we obtain the required expression

H = 1.Jm *P'lv p +npqiJ iJ) npqp v = L-nPql1 v1\ P q P q P q 'P q'

(2.41)

(2.42)

It is easy to guess that the above Hamiltonian is conserved during the motion of the disloca
tion and will be identified with its energy (ef. Section 3).

3. EQUATIONS OF MOTION AND THEIR PROPERTIES
CONSERVATION OF ENERGY

Now we can derive the equations of motion and the principle of conservation of energy.
We postulate the variational principle

where
l)W = 0

W{~(t)) rio dtL(~(t), ~(tl, ~(t)].
J"

(3.1)

(3.2)
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The Lagrangian density L does not contain in our case ~(t), the notation (3.2), however, is
convenient in our further considerations. The variation b in the principle (3.1) is the total
variation of the functional, due to the variation of the form of the function ~(t) and the
variation of the independent variable t; we denote

bt = e, (3.3)

then the variation of ~(t) produced by the change of the form of the function only, is given
by the formula

The total variation (3.1) can be written in the form of the sum

I
t2 It2

bW = dt bL+ b(dt)L.
t,l 11

(3.4)

(3.5)

Taking into account that

d
b(dt) = dt d/bt),

where

(3.6)

_ cL cL d aL d2

bL = c(p <>(p+ a(pd/<>(P)+ c(pdt2 (<>(p) (3.7)

(the variation <> commutes with the differentiation with respect to time) and substituting
into (3.5) we obtain the total variation of the consideFed functional

bW = L: dt{ [:~<>(p +:t :t(<>(p) +:t :t
22 (<>(p~ +:t(Lbt)}

after simple transformations of the square brackets, making use of (3.4) and (3.3) we have
finally

It2 It2 dO
bW = dt[L]P<>(p- dt-e

t, t, dt

where [L]i is the Lagrangian derivative

[L]i = cL _i (c~)+ d
2

2
(c~)

C(i dt cC dt cC

and

(3.8)

(3.9)

{[
CL d (CL)J . (~L. .. }

0= - c(p - dt c(p ((p-(p)+ at}(p-(p)+L . (3.10)

Thus, the variational principle (3.1) and the du Bois-Reymond lemma lead to the
following form of the Noether theorem [6] : in order that the functional W be invariant
with respect to the transformation (3.3) it is necessary and sufficient that for an arbitrary
t in the interval (t1' t2 ),

(3.11)
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If we, moreover, require that the Euler equations of the problem be satisfied,

[LJ = 0, (3.12)

the relation (3.11) yields the principle of conservation of the quantity O(t), namely

dO
dt = 0. (3.13)

Equation (3.12) are the required equations of motion of a concentrated defect in an
elastic field, when no external forces are present.

Assume now that the transformation (3.3) is a shift of the time axis; then

i5'i = ° i.e. ~i = °
and for the quantity O(t) we obtain the formula (cf. 2.42)

(3.14)

(3.15)

This quantity will be called the energy of the defect and the law (3.13) the principle of
conservation ofenergy. In contrast to the kinetic energy ofa Newtonian particle, the energy
given by (3.15) is not positive definite. This energy is positive definite if and only if the
defect is tangential and the motion is uniform (cf. 2.31).

Evidently, the principle of conservation of energy can be derived directly from the
equations of motion. If there exists an external force acting on the defect, the equations of
motion take the form

(3.16)

(3.17)

Multiplying (3.16) by vP, after simple transformations we obtain

dO
-= f.v
dt

which in the case f = °yields (3.13). The law (3.17) states simply that the change of energy
of the defect is equal to the work done by the external force.

We now proceed to investigate the properties of the equations of motion; the latter
can be written in the form

(3.18)

This is a system of three ordinary differential equations with the unknown function ~(t).

One of its important properties is the fact that in the general case the equations are coupled,
in view of the tensorial nature of the mass of the dislocation m*pq and the field mass of
second kind n

pq
. It follows from this property that in general there does not exist a motion in

an arbitrary constant direction, which we denote by Vi. In fact, then we have

Vi = 0, (3.19)

and hence, the equations of motion take the form

(3.20)

This is a system of three equations with one unknown function v(t); assuming that v(t) =I- 0,
in order that the above equations be reduced to one, we must have

(3.21)
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where c is an arbitrary constant; for an arbitrary Vi this condition is satisfied if and only if
npq = cm*pq which in accordance with (2.29) and (2.30) never takes place for U =I O. Thus,
a defect set in motion either moves uniformly along a straight line, or it moves along a
curved trajectory. By setting the defect into motion we understand prescribing for t = 0
the four quantities (0), viOl, viOl and viOl. The case is entirely different when the direction
of the initial motion is not arbitrary but connected with the structure of the defect. Set for
instance Vi = ni

; then, instead of the condition (3.21) we have

(3.22)

(3.24)

(3.23)

(ii)

i.e., according to (2.29)

nP[(n l +ns)U2 + (nz +tn3)Ufnl] + UP(tn3 + n4)U(n)

= c~l{n{;~~+(ml +ms)Uz+(mz+tm3)Ufn]

+ UPHm3 +m4)U(nl}-

With an appropriate choice of c this condition is satisfied in the following two cases:

(i) Urn) = 0 (Tangential defect),

A (n l +ns)Uz
c = ~ ---:---.-:---:-..,.:--"'----,-----::

AI (mdlpA l)+(ml +ms)UZ

Ui = Uni (Normal defect),

A (n t +nZ+n3+n4+nS)UZc = ~ -,---.-:--;-:-'---,---=----=:.--~--=-------=

Al (mdlpAI)+(m t +mZ+m3+ m4+ mS)U 2
•

In these cases we are faced with non-uniform motion along the straight line defined by the
director ni

•

Suppose now that Vi = t i
, t. n = 0; now we have

tP(nt Uz+ nzufn» + !nPnz U(nlU(t) + UPn4U(ll

= c~t [tP(;~~ +mt uz+mzUfnJ +tnPm3U(np(t) + UPm4U(IJ (3.25)

Now, too, the condition is satisfied for both normal and tangential defects. Thus, we have

(i) Urn) = 0,

A (nt +n4)UZ
c = - ---:---.-:---:-..,.:--,---'----------:;-

At (mdlpAI)+(m t +m4 )UZ

(ii) A (n t +nz)Uz
c = - -:----.-:---:-7c--=:..---,--c-;;-

At (mdlpAI)+(mt +mz)Uz

and a non-uniform motion in the constant direction t i is possible.
In all above cases the equation of motion has the form

c't; v= 0

(3.26)

(3.27)
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where in accordance with (3.24) and (3.26) c is a small constant parameter of the order t~.

It is of course important to establish the sign of c. A simple calculation shows that in the
case of a tangential defect we always have c < 0 while in the case of a normal defect, for
both kinds of velocities, in the considered range of s, the constant c changes its sign at least
once. The case c < 0 corresponds to the periodic solutions of equation (3.27), whereas in
the case c > 0 the solution contains a term of the form ety'c which is divergent as t ---t 00.

Thus, in the case and only in the case ofnormal defects there exist elastic media in which the
motion of the considered concentrated defect is divergent.

For c < 0 the general solution of equation (3.27) can be written in the form (we prefer
to put down the corresponding position vector)

(3.28)

where (0' Vo, vo, Do are the initial values. Thus, the free motion of the considered defect is a
uniform motion with oscillations of a very small amplitude and a very large frequency
superposed on it; as c ---t 0 we recover the Newton second law. The above phenomenon of
oscillations clearly resembles the well-known "Zitterbewegung" of an electron.

We end this section with a remark concerning the order of the derived equations. It may
seem strange that the order of the derived equations of motion is four, while in electro
dynamics the corresponding equations are of second degree (of the fifth and third degree,
respectively, if the radiation damping is taken into account; see Section 4). The difference
is due to the different models of "particles" ; in fact, the electron constitutes a counterpart
of the simple layer surface potential, whereas the defect we consider is a double layer (see
equation 2.7), a discontinuity in displacement being equivalent to a distribution ofa double
force. The equations of motion of a dipole electromagnetic charge can be shown to be of
fourth (fifth) degree and, conversely, the equations for a surface distribution of forces in
elasticity are of second (third) degree.

4. RADIAnON DAMPING

It is evident that all processes described by the equation of motion (3.12) or (3.16)
derived from a variational principle (3.1) are of reversible character. It can easily be shown
that an irreversible term in the equations of motion ofthe form

S[iPr,; (4.1)

can be deduced from the Lagrangian density

(4.2)

The symmetric part of SM yields in (4.2) a time derivative, which leads to no term in the
equation of motion. It was noted before, however, (Section 2) that an introduction of the

tensor Ginstead of Gwhich could perhaps in a natural way account for the irreversibility
of the process, leads to the result spq = O. Of course we may always add formally to the
Lagrangian density a term of the form (4.2) with an indefinite tensor spq, there seems how
ever to exist no justification for this procedure.

On the other hand it is obvious that during its motion a defect in an elastic field radiates
elastic energy resulting in a damping which by analogy to electrodynamics will be called
the radiation damping. This phenomenon leads to a new term in the equation of motion
called the force due to the radiation damping.
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In non-relativistic electrodynamics this force has the value ~ (e2/c3)~ [cf. e.g. 7], well
confirmed by experiment. This expression can be derived either by energy considerations
or by the Wheeler-Feynman method [8] ; in the case of the elastic field, the first method,
mainly due to the presence of the term with the Heaviside function in the Green tensor,
leads to very complicated calculations, we shall therefore make an attempt to adapt the
Wheeler-Feynman procedure to defects in elastic field. It should be emphasized, however,
that it has been verified that the energy method leads to an expression of exactly the same
form, we may therefore hope that future calculations will prove that the coefficients (the
tensor spq, see below) are also the same, as is the case in electrodynamics.

Consider therefore a system of interacting defects; the action of a defect f3 on defect
Ct (Ct, f3 = 1,2, ...) is described by the force of f3 on Ct, given by the expression [see 4].

(4.3)

(4.4)

where

+ 1 (reI adv)
U=2- U + U '
P P P

Assuming that there are no body forces, the total force on a defect Ct, including the self-force,
has the form

(4.5)

or, substituting from (4.3)

The sum appearing in this formula can be transformed as follows:

" + "ret 1 ( reI adv) +
L. U = L. U -- I U - U + U
P P p'*a P 2 p'*a P P a

I r~1+ ~ +! (r~1 _a:v) _! I (r~1 _a~v)
p'*a P a 2 a a 2 P P P

and, similarly, with obvious notations,

"ret + 1(reI adv) 1" (reI adv)f T = L. f + f +- f - f -- L. f - f .
a p'*a ap aa 2 aa aa 2 p ap aP

(4.6)

(4.7)

(4.8)

The last term in (4.7) or (4.8) is a characteristic of the whole system of defects moving in

elastic field. Observe now, that since the singularities O(~I and a~v are the same, we have at all
p p

points of the medium, including the surfaces of the defects, the homogeneous Lame equa
tions

P I" (reI adv).- L. U - U = O.
2 p p p

(4.9)
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We now make the following assumption constituting the essence of the Wheeler-Feynman
method: both in the infinite past and the infinite future the total displacement field, i.e.
the displacement field due to all defects, vanishes identically. Taking into account that

,el
U 0 for t = - rYJ
Ii

adv
U == 0 for t = +00
Ii

the above stated condition can be written in the form

I ('ul adV) for t =u == 0 -ex;,
Ii Ii II

Irul adv)
(4.10)

u == 0 for t = + 'XJ.
Ii Ii Ii

Thus, denoting

1I[ret adv ]ii(x, t) 2 Ii ~(x, t)- ~ (x, t)

we have the following initial-final problem for this function:

PO = 0 for any t

ii(x, - 'XJ) = ii(x, + 00) = o.
(4.11)

Under certain regularity assumptions, just as in the case of the Cauchy problem, it can be
proved that the above problem has only the trivial solution, i.e.

ii(x, t) = 0 for any t and x.

Then, formulae (4.7) and (4.8) take the form

I ~ I '~I +~ +~('~I_ a~v)
Ii Ii Ii*~ Ii ~ 2 ~ ~

f T I 'f'+f+~('f-a;v).
~ Ii*~ ~Ii ~~ 2 ~ ~~

(4.12)

(4.13)

(4.14)

In the last formula the first term in the right-hand side describes the action of other defects
on the defect IX, the second term constitutes the infinite self-force examined in Section 2
and finally the last term describes a (finite) additional contribution to the equations of
motion; this is the required force due to the radiation damping, i.e.

'ad 1(,el adv)f=-f-f.
~ 2 ~~ ~~

It arose as a result ofthe assumption that due to the exchange ofenergy (interaction) between
all defects in the field, initially and finally, all energy in the field is entirely absorbed and a
complete rest occurs.

We now proceed to calculate this force in terms of the instantaneous characteristics
ofthe defect. This can be done either directly or by expanding the considered functions into
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(4.15)- 1(ret adv)G = - G-G
2

instantaneous potentials; we use here the first method. First, introduce the notations

_ 1(ret adv)
u=-u-u
IZ 2 IZ IZ'

and observe that

- +
G(~t-~l' t-r) = sgn(t-r)G(~t-~1' t-r).

According to (2.9) we have the expression for the displacement ii(~, t):

ii(~, t) = - /lUjnm(Jjm pq fdrVpG~((t-(!' t~;)
IX ct: a IX IX IX

- pUjnm(jjq fdr(~ ~ G~.
a a a: ur

(4.16)

(4.17)

Hence, making use of (4.14) and (4.3) and dropping the irrelevant index r:x we have for the
force to be calculated

+ /lp(Jmtkp(jj/ X fdr(rViV ~G ,+ /lP(Jlrjs(jkm(t fdrViV 0 G '
p or k) S or k)

+ p2(jkm(jjl(tfdr(rVi~G ' (4.18)
or2 k)

/ ' k ,dt f a - 2 k 'I' d f .a2
- ]+/lp(Jr)s(j m(jlt_ X drV -G ,+p (j m(jJ (jlt - dr(r-G,

dt S or k) dt or2 k) .

As in the whole paper we confine ourselves to expressions linear in the velocity of the defect
or its derivatives. Thus, the fourth and the third terms in the right-hand side of (4.16) may
be omitted, as easily verified by integration by parts. Integrating by parts in some of the
remaining terms as well, we obtain

J i = U Un n p 2[c4 (Jmtk P(Jlr js fdrViV V G ,c2(Jmtkp fdrprt7iV G'm I r t 2 P S k) 2 .. v P k

(4.19)

_C~(Jmtkp(jri fdr(jVjVpGl +(jrifdrrtGmJ.

The Green tensor entering the above formula has the form (cf. 2.19)

Gkj = Gkj(~t - ~l' t - r) = (jk j(rt' 8)

-sgn 8. 4:P{[ [:6 hj(j'(¢J- ~~ (j(¢c)] de (4.20)

+ (j~ (j(¢c,)}
C2

where
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(4.21)

In our linear approximation we have the relations

(0), (ml ( r2 )1 (ol, (m){ 1 }(a(O)sgnOJ 02_ af = (a lim sgnOJ 02- 2 [r2(t)+02 v2+ ...]
c p=a r(t)~O C

(~), I' {)(Tl (ll2 r
2
(t))= ~a 1m sgn u u u --2~

r(rl~O C

(0). (m)

= G sgn 8 J (02)

and the integrands of the integrals in (4.19) have the form

(4.22)

where

ALisp = 12J(kjJ~iJ:\ +3J(kAlAg,

Bkjspiu = 3JkjJ(spJi)u'

In the above integrals we replace integration with respect to r by integration with respect to
(0),

oand we expand the quantities '(f) into the Taylor series around the point r = t:

(0) (0). (ol (0+ 1) (0+2)02 (0+3l03

((r) = ((t+O) = ,,+ ('0+ ('2+ ('6

Further, making use of the identity

sgn OJ(02) = - J'(8)t

we obtain

t It can be proved as follows:

2 .• 2 2 . [bw- a) bI8+a)]bW ) = hm 6(0 -a ) = hm -- .--+-----
a"'" 0 a"'" 0 2£1 2a

Hence

[
bW-a) b(8+al]

sgn 88(8 2) = lim -----. = -b'(8)
a-O 2([ 2a

(4.23)

(4.24)
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(n)

In view of the above relations, bearing in mind the symmetry of the function b (0 2
) we finally

obtain the expressions for the required integrals

fdO(l(t+O) sgn Ob(01) = f dO(ti+','iO) sgn O(j(01)

= fde','iOsgnO(j(01) = - fdO ,10(j'(O) =';::1

f dO(i(t +0) sgn OJ'(01) = f dO( (i+ tiO -t',ie; -t"i~ )sgn O(j'(tF)

= f dO( tiO+'tl~ )sgn OJ'(01) = - fdO (tiO +,,1
0
;) a~1 J'(O) (4.25)

= - fdOJ(O)~·ti+"el0:)

= -it1

fdO[(i(t +O)_(i(t)] sgn O(j"(01)

After simple though cumbersome calculations, substituting into (4.17) we obtain the
required force due to the radiation damping, namely we have

where
(4.26)

Sip ~{JiP(Sl U2+s1utn»)+S3U(nln(;U p) +S4U;UP+s5U1ninp}' (4.27)
840nc1

The coefficients of Si are constants given by the simple formulae

Sl = 4s7 + 10

S1 = 92s7 -112s5+35s3 +6

S3 = -80s7 +140s5-70s3 -18 (4.28)

S4 = 8s7 +6

S5 = 8s7 -28s5+35s3 +34,

Thus, the force due to the radiation damping is proportional to the fourth derivative of
the velocity and hence it increases the order of the equation of motion by one, similarly to
the equation of motion of an electron in Maxwell field.



902 ELZBIETA KOSSECKA and HENRYK ZORSKI

Consider now some particular cases of this force, as in Section 3. Assume first that the
defect moves in the direction of its normal, i.e. Vi = vvi, Vi = ni

. We then have

(i)

(ii)

(4.29)

rad p
f~ = - 840nd U

2
'V'(St +S2 + S3 +S4 +Ss)'

Set now Vi = vti, n . t = 0; here we obtain

(4.30)

(i)

(ii)

Tad p
f~ = - 840nd U

2
'V'ti(St +S4)

Ui = Uni

(4.31)

rad p
f~ = - 840nd U

2
'jJ't

i
(St +S2);

in all cases it is readily verified that since

(SI +S2+S3+S4+SS) > 0

(SI +S4) > 0

(SI +S2) > 0

(SI +SS) > 0

for a positive Ii we always have in the case Vi = vni

rad
f .n < 0
a

whereas in the case I,i = vti
rad
f . t < 0
a

REFERENCES

(4.32)

(4.33)

(4.34)

(4.35)

[IJ J. D. ESHELBY, The equation of motion of a dislocation. Phys. Rev. 90,248 (1953),
[2J A. M. KOSEVITCH, Equations of motion of dislocations (in Russian). Zh. expo teoret. Phisiki. 49, 637 (1962).
[3J P. G. BERGMANN, The special theory of relativity. Handb. Physik, Band IV. Springer (1962).
[4J H. ZORSKI, Theory of discrete defects. Archwm Mech. slosow. 18, 301 (1966).
[5J F. R. N. NABARRO, The interaction of screw dislocations and sound waves. Proc. R. Soc. A209, 278 (1951).
[6] I. R. GELFAND and S. V. FOMIN, Variational calculus (in Russian). Gas. lzd. Phis.-Mal. Lil. Moscos (1961).
[7] A. O. BARUT, Electrodynamics and Classical Theory of Fields and Particles. Macmillan (1964).
[8J J. A. WHEELER and R. P. FEYNMAN. Interaction with the absorber as the mechanism of radiation. Rev. mod.

Phys. 17, p. 157 (1945).



Linear equations of motion of a concentrated defect 903

[9J J. RZEWUSKI, Field theory. PWN (1958).
[IOJ E. T. WHITTAKER, A Treatise on the Analytical Dynamics. Cambridge University Press (1952).
[II] H. ZORSKI, Statistical theory of defects. Forthcoming in: Proc. IUTAM Symposium on the Generali::ed

Cosserat Continuum and the Continuum Theory of Dislocations with Applications. Freudenstadt (1967).
[12J A. RADOWICZ, Statistical theory of continuous distributions of dislocations in a linear isotropic elastic

continuum. Bull. Acad. pol. Sci. Ser. Sci. tech. (1968).

(Received 26 September 1966; revised 6 March 1967)

Resume-Le mouvement d'un deraut concentre (point) dans un milieu elastique est examine en se basant sur un
principe de variations. Les equations de mouvement et Ie principe de la conservation de l'energie sont deduites
et examinees d'une faeon assez detaillee. La localisation de l'expression de Lagrange permet de regulariser sa
partie singuliere et de deduire des equations differentielles de mouvement formelles. La force d'amortissement de
radiation est introduite au moyen du processus Wheeler-Feynman. Dans I'expose nous nous bomons aI'equation
du second degre de Lagrange et par suite a des equations de mouvement du premier degre.

Zusammenfassung-Die Bewegung eines konzentrierten (Punkt-) Defektes in einem elastischen Medium wird auf
Grund des Variationsprinzips untersucht. Die Bewegungsgleichung und das Energieprinzip werden abgeleitet
und genau untersucht. Lokalisierung der Lagrange'schen Funktion ermoglicht es deren singuHiren Teil zu
regeln und explizite Differentialgleichungen der Bewegung abzuleiten. Die Strahlungs-Dampfungskrafte werden
mittels des Wheeier-Feynman Vorganges eingeftihrt. In der Arbeit beschranken wir uns auf die quadratische
Form der Lagrangeschen Funktion und somit auf die linearen Bewgungsgleichungen.

A6cTpaKT-Ha OCHOBe sapHaI.\HOHHoro npHHI.\Hna Hccne)l,yeTcli )l,BHJKeHHe COCpe)l,OTO'lHOrO )l,e<l><l>eKTa B
ynpyroH cpe)l,e. ,l],aH BbIBO)l, ypaBHeHHH )l,BHJKeHHlI H 3aKOHa coxpaHeHHlI 3HeprHH, KOTopbIe )l,aJlee Hccne
)l,YIOTCll nO)l,po6HO. JloKanH3aI.\HlI narpaHJKHaHa )l,aeT B03MOJKHOCTb perynllI.\HH HX cHHrynllpHylO '1aCTblO
H BbIBeCTH TO'lHble )l,H<I><l>epeHI.\HaJlbHOe ypaBHeHHlI )l,BHJKeHHlI. TIPHBO)l,HTCli cHny 3aTyxaHHlI H3nY'leHHlI B
CMbICJ1e MeTO)l,a qHnepa-<lleHHMaHa. ABTOP OrpaHH'IHBaeTCli B 3TOH pa60Te KBa)l,paTHbIM narpaHJKHaHOM,
H OTCIO)l,a nHHeHHbIM ypaBHeHHeM )l,BHJKeHHlI.


